

RAPPORTO DI PROVA N. 417991

Cliente

NEOLIT ITALY S.r.l.

Via Josef Riehl, 11 - 39030 GAIS (BZ) - Italia

Oggetto#

masselli denominati "Palace 15x15x6 grigio", "Palace 15x15x6 antracite", "Vineo 16x16x6 nebbia"

Attività

determinazione dell'indice di riflessione solare secondo la norma ASTM E1980 - 11(2019)

Risultati

Indice di riflessione solare "SRI"			
Denominazione	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$
Palace 15x15x6 grigio	25	25	25
Palace 15x15x6 antracite	7	6	6
Vineo 16x16x6 nebbia	38	39	39

(#) secondo le dichiarazioni del cliente.

Bellaria-Igea Marina - Italia, 13 giugno 2024

L'Amministratore Delegato

Commessa:

101635

Provenienza dell'oggetto:

Identificazione dell'oggetto in accettazione:

2024/1844 del 10 giugno 2024

Data dell'attività:

11 giugno 2024

Luogo dell'attività:

Istituto Giordano S.p.A. - Strada Erbosa Uno, 82/84 - 47043 Gatteo (FC) - Italia

Pagina Descrizione dell'oggetto# Riferimenti normativi 3 Apparecchiature Modalità Condizioni ambientali Risultati

Il presente documento è composto da n. 9 pagine e non può essere riprodotto parzialmente, estrapolando parti di interesse a discrezione del cliente, con il rischio di favorire una interpretazione non corretta dei risultati, fatto salvo quanto definito a livello contrattuale.

I risultati si riferiscono solo all'oggetto in esame, così come ricevuto, e sono validi solo nelle condizioni in cui l'attività è stata effettuata.

L'originale del presente documento è costituito da un documento informatico firmato digitalmente ai sensi della Legislazione Italiana applicabile.

Responsabile Tecnico di Prova:

Dott. Manuel Montebelli

Responsabile del Laboratorio di Ottica:

Dott. Andrea Cucchi

Compilatore: Agostino Vasini

Pagina 1 di 9

Descrizione dell'oggetto#

L'oggetto in esame è costituito da n. 9 provini di massello in calcestruzzo. In particolare:

- n. 3 provini della tipologia "Palace 15x15x6 grigio", dimensioni nominali 150 mm × 150 mm, spessore nominale
 60 mm;
- n. 3 provini della tipologia "Palace 15x15x6 antracite", dimensioni nominali 150 mm x 150 mm, spessore nominale
 60 mm;
- n. 3 provini della tipologia "Vineo 16x16x6 nebbia", dimensioni nominali 160 mm × 160 mm, spessore nominale
 60 mm.

Fotografia dell'oggetto "Palace 15x15x6 grigio"

Fotografia dell'oggetto "Palace 15x15x6 antracite"

Fotografia dell'oggetto "Vineo 16x16x6 nebbia"

^(#) secondo le dichiarazioni del cliente; Istituto Giordano declina ogni responsabilità sulle informazioni e sui dati forniti dal cliente che possono influenzare i risultati.

Riferimenti normativi

Norma	Titolo
ASTM E1980 - 11(2019)	Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped Opaque Surfaces
ASTM C1371 - 15	Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers
ASTM E903 - 20	Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres
ASTM G173 - 23	Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface
Technical Note 79-17##	Emissivity measurements for in-place surfaces and for materials with low thermal conductivity

(##) documento rilasciato da Devices & Services Company.

Apparecchiature

Descrizione	Codice di identificazione interna
Calibro digitale modello "CDEP 15" della ditta Borletti, campo di misura $0 \div 150$ mm, precisione 0,01 mm	OT032
Emissometro modello "AE1" della ditta Devices & Services Company per la misura dell'emissività a temperatura ambiente	OT024
Multimetro digitale modello "34970A" della ditta Agilent	OT028
Spettrofotometro modello "LAMBDA 750S" della ditta PerkinElmer per misure negli intervalli spettrali ultravioletto/visibile/vicino infrarosso, campo di misura 200 ÷ 2500 nm, corredato di sfera integrante di diametro 100 mm modello "RSA ASSY" della ditta Labsphere	OT042

Modalità

Misura del fattore di riflessione solare e calcolo del fattore di assorbimento solare

È stata effettuata la misura del fattore spettrale di riflessione negli intervalli UV-VIS-NIR utilizzando lo spettrofotometro su ciascun provino.

La misura dello spettro di riflessione è stata eseguita con angolo di incidenza 8°, utilizzando come riferimento il campione per riflessione diffusa "Matt White" della ditta Lucideon.

Il fattore di riflessione solare " ρ_e " per ciascuna area considerata è stato calcolato secondo la norma ASTM G173 - 23 utilizzando la distribuzione della radiazione solare totale per massa d'aria 1,5. Si è poi determinato il fattore di riflessione solare medio " ρ_e ". Il fattore di assorbimento solare " α_e " è stato determinato mediante la relazione: α_e = 1 - ρ_e .

Misura dell'emissività

L'emissività della superficie dell'oggetto è stata misurata utilizzando l'emissometro conforme alla norma ASTM C1371 - 15. Tale strumento, dopo opportuna calibrazione rispetto a due standard ad emissività nota (s/n 1759 con ε = 0,87 e s/n 1730 con ε = 0,06 forniti da Devices & Services Company), fornisce un segnale in tensione direttamente proporzionale all'emissività della superficie in esame.

La misura dell'emissività è stata eseguita considerando i contenuti del documento "Technical Note 79-17".

Calcolo dell'indice di riflessione solare "SRI" e della temperatura superficiale

La temperatura superficiale stazionaria "T_s" e l'indice di riflessione solare "SRI" sono stati determinati in accordo alla norma ASTM E1980 - 11(2019) (Approccio 1) in corrispondenza di tre valori per il coefficiente convettivo di scambio termico "h_c":

- $h_c = 5 \text{ W/(m}^2 \cdot \text{K)}$ che corrisponde a una velocità dell'aria bassa (da 0 a 2 m/s);
- $h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$ che corrisponde a una velocità dell'aria media (da 2 a 6 m/s);
- $h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$ che corrisponde a una velocità dell'aria alta (da 6 a 10 m/s);

e in condizioni ambientali e solari standard definite da:

- flusso solare = 1000 W/m²;
- temperatura ambiente dell'aria = 310 K (pari a 37 °C);
- temperatura del cielo = 300 K (pari a 27 °C).

Le superfici standard sono così definite:

- bianco standard fattore di riflessione solare di 0,80 ed emissività di 0,9;
- nero standard fattore di riflessione solare di 0,05 ed emissività di 0,9.

L'indice di riflessione solare "SRI" è stato determinato secondo la seguente formula riportata in ASTM E1980 - 11(2019) paragrafo 4:

$$SRI = 100 \frac{T_b - T_s}{T_b - T_w}$$

dove: T_w = temperatura stazionaria della superficie standard bianca, espressa in K;

T_b = temperatura stazionaria della superficie standard nera, espressa in K;

T_s = temperatura superficiale stazionaria, espressa in K.

L'indice di riflessione solare "SRI" rappresenta quindi la temperatura stazionaria di una superficie " T_s ", dipendente dal fattore di riflessione solare, dall'emissività termica e dal coefficiente di scambio termico convettivo, valutata rispetto a quella del bianco standard (ρ_e = 0,80, ϵ = 0,9, SRI = 100) e a quella del nero standard (ρ_e = 0,05, ϵ = 0,9, SRI = 0) in condizioni ambientali e solari standard.

I valori di "SRI" determinati per ciascun provino per il medesimo coefficiente convettivo di scambio termico "h_c" sono stati mediati aritmeticamente.

Condizioni ambientali

Temperatura	(23 ± 1) °C	
Umidità relativa	(40 ± 5) %	

<u>Risultati</u>

Palace 15x15x6 grigio

Provino	Fattore di riflessione solare	Fattore di assorbimento solare	Emissività termica
	"ρ _e "	" Q e"	"ε"
[n.]	[-]	[-]	[-]
1	0,236	0,764	0,923
2	0,233	0,767	0,928
3	0,230	0,770	0,924
Valore medio	0,23	0,77	0,93

	Temperatura staz	Temperatura stazionaria della superficie standard bianca "Tw" [K]		
	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
	322,2	318,0	313,9	
	Temperatura sta	Temperatura stazionaria della superficie standard nera "T _b " [K]		
	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
	376,2	355,4	334,3	
Provino	Tempe	Temperatura superficiale stazionaria "T _s " [K]		
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
1	362,7	345,9	329,2	
2	362,7	346,0	329,2	
3	363,1	346,2	329,3	

Provino	Indice di riflessione solare "SRI"		
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$
1	25,1	25,2	25,1
2	25,0	25,0	24,8
3	24,4	24,4	24,3
Valore medio	25	25	25

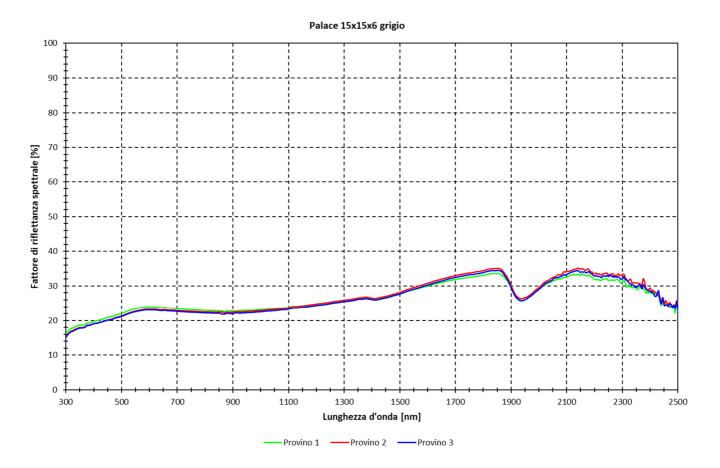
Palace 15x15x6 antracite

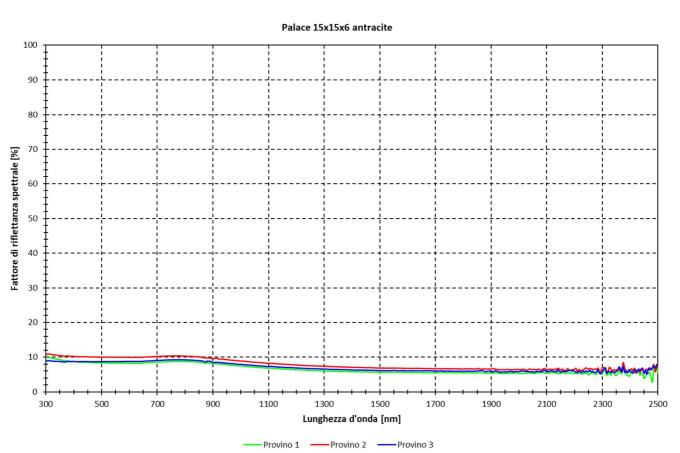
Provino	Fattore di riflessione solare	Fattore di assorbimento solare	Emissività termica
	"ρ _e "	" Q e"	" ɛ "
[n.]	[-]	[-]	[-]
1	0,079	0,921	0,929
2	0,094	0,906	0,927
3	0,083	0,917	0,926
Valore medio	0,09	0,91	0,93

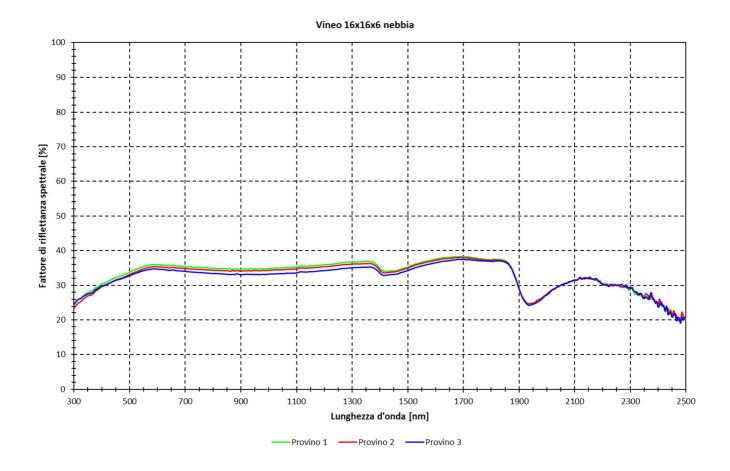
	Temperatura stazionaria della superficie standard bianca "Tw" [K]			
	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
	322,2	318,0	313,9	
	Temperatura sta	Temperatura stazionaria della superficie standard nera "T _b " [K]		
	$h_c = 5 \text{ W/(m}^2 \cdot \text{K)}$ $h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$ $h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$			
	376,2	355,4	334,3	
Provino	Temper	atura superficiale stazionaria	"T _s " [K]	
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
1	373,0	353,3	333,3	
2	372,1	352,7	332,9	
3	372,8	353,2	333,2	

Provino	Indice di riflessione solare "SRI"		
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$
1	6,1	5,4	4,8
2	7,7	7,2	6,7
3	6,3	5,7	5,2
Valore medio	7	6	6

Vineo 16x16x6 nebbia


Provino	Fattore di riflessione solare	Fattore di assorbimento solare	Emissività termica
	"ρ _e "	" c e"	"ε"
[n.]	[-]	[-]	[-]
1	0,345	0,655	0,922
2	0,340	0,660	0,922
3	0,333	0,667	0,924
Valore medio	0,34	0,66	0,92


	Temperatura stazionaria della superficie standard bianca "T _w " [K]			
	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
	322,2	318,0	313,9	
	Temperatura sta	Temperatura stazionaria della superficie standard nera "T _b " [K]		
	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 5 \text{ W/(m}^2 \cdot \text{K)}$ $h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$ $h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$		
	376,2	355,4	334,3	
Provino	Tempe	Temperatura superficiale stazionaria "T _s " [K]		
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$	
1	355,2	340,7	326,2	
2	355,6	340,9	326,4	
3	356,0	341,2	326,6	


Provino	Indice di riflessione solare "SRI"		
[n.]	$h_c = 5 W/(m^2 \cdot K)$	$h_c = 12 \text{ W/(m}^2 \cdot \text{K)}$	$h_c = 30 \text{ W/(m}^2 \cdot \text{K)}$
1	38,9	39,3	39,4
2	38,2	38,6	38,7
3	37,5	37,8	37,8
Valore medio	38	39	39

DIAGRAMMI DELLA RIFLETTANZA

Il Responsabile Tecnico di Prova (Dott. Manuel Montebelli)

Il Responsabile del Laboratorio di Ottica (Dott. Andrea Cucchi)

Maurel Males